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Introduction to ‘
stochastic IBNR-methods

— Stochastic models versus mechanical methods

— Variability of predictions

— Stochastic models underlying mechanical methods
— Poisson model




S tochastic models versus mechanical
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Mechanical methods/techniques (‘deterministic’)

* Algorithmic calculation of reserves

* Only best estimate of ultimate loss, no measure of precision
* Informal assessment of fit to data

‘Stochastic’
* Specification of probability distribution or mean+(co)variance
* Testing fit to data:
which (sub)model describes reality best?
* Prediction error available
* Diagnostics: which developments deviate significantly?
* Both quantitative and qualitative assessment
(added value of actuary)

Why stochastic IBNR-models?
N/
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Stochastic IBNR-models have become increasingly popular:

* best estimates not sufficient anymore
=> more focus on accuracy of predictions

* incorporated in user-friendly actuarial software programs
(e.g. model selection, data handling)

» progress in literature

first step: assumptions about data = underlying model




Types of stochastic IBNR-models
L}
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* Linear regression
— normal
— log-normal (Zehnwirth)
— autoregressive (Mack)
* Generalized linear models (Renshaw & Verrall)
« Structure models (Posthuma partners)
» Bayesian models
— Bornhuetter-Ferguson
* Bootstrapping (e.g. to mechanical methods)

Accuracy
N/
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Variability of predictions

1. Prediction error

2. Predictive distribution
— Entire distribution of possible outcomes

— Standard deviation of possible reserve outcomes




Mean-variance relations
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Normal E[D;] = y; and Var[D,;] = 0,1.2
Poisson E[D;] = y; and Var[D;] = ¢y;
Gamma E[D;] = u; and Var[D,] = ;2

Inverse Gaussian E[D;] = y; and Var[D,;] = (pp,-ﬁ

Decomposition prediction variance
N/
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Prediction variance

process variance + estimation variance




Mean Squared Prediction Error
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E[(Y-Y)1  =E[{Y-E[Y]} - {Y-E[Y]}}]

= EL(Y-E[Y]?] + E[(V-EIY)]
— 2 E[(Y=-E[YD(Y=E[Y])]

=** E[(Y-E[Y])] + E[(Y-E[V])]

* assuming Y is unbiased
** assuming future and past observations are independent

— Stochastic models versus mechanical methods

— Variability of predictions

— Stochastic models underlying mechanical methods
— Poisson model




S tochastic models underlying mechanical
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Some stochastic models have identical best estimate reserve
as mechanical methods

multiplicative Poisson — loss (V) and development (=) period
= chain-ladder method

autoregressive model — Mack
= chain-ladder method

multiplicative Poisson — loss (V) and calendar (N) period
= separation method (arithmetical)

log-normal — loss (\) and calendar (N) period
= separation method (geometrical)

Different stochastic models can encompass same method

Xy S tochastic Chain Ladder Models
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Mack

* autoregressive E[X| X;;.1] =1 X4

« distribution-free (first two moments)

Renshaw en Verrall
* Poisson distribution: Xj;~ Po(oxf3;)
* X; are stochastically independent

 entire distribution

= two models corresponding to one method




Poisson model (1)
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Define D; as incremental claim in loss period / and
development period j

Poisson model: D; ~ Poisson(};)
P[D;=d] = exp(-A;) x 4,4 / d!
E[D;] =% = o; x B; Var[D;] = &; = o; x B;

“Overdispersed” Poisson: Var[D,] = k x a; x ;
= Quasi-likelihood: not only for claim numbers (integers)

Poisson model (2)
N/
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0, : expected ultimate loss period i
B; : proportion of ultimate loss in development period j

B; must be positive = positive column totals (see later on)
Restriction on parameters, e.g. Z ;=1 (or a,=3,=0)
Other possibility:

A= a; x B; % v, (= including calendar-effect)




Poisson model (3) — maximum likelihood estimator
N/
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Principle of maximum likelihood estimation

» Take joint probability-function of data: L = H,-J- P[D;=d|]
(‘likelihood-function’)
* Insert realised values of dj

» Maximize function with respect to unknown parameters
(find distribution with highest probability on realised data)

Analytically and numerically easier: maximize log-likelihood

£ =In(L) = Zi,j In(P[Dij=dl,j])

Poisson model (4) — maximum likelihood estimator
N/
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Log-likelihood function:

n M

£=> % =1 +d; In(A,) A =a X

i=1j=1

Maximization by putting derivatives equal to zero:
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Poisson model (5) — maximum likelihood estimator

Basic algorithm to solve:

1
2
3
4

take starting values for B’s (e.g. 1,0,...,0)
calculate o’s

calculate B's

repeat 2) and 3) until convergence

~— N N S

However: quicker and more stable numerical algorithms exist!

Poisson model (6) — maximum likelihood estimator
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Property of Poisson ML-estimators

(back) estimated row/column totals

triangle row/column totals

mi mj. mi

=y a3 o zakﬁ, -3,
j=1 =1 i= /'
|




Poisson model (7) — resemblance with CL
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% % % D; ~ Po(axB))
.,

O3 = const
~ ]
B4_ const

Poisson model (8) — smoothing
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* Many parameters in the model: for each row/column
= estimation variance

» Losses have not been fully settled during data period
= prediction beyond square array

» Parsimony of parameters:

— testing on significance and equality of parameters
(likelihood ratio test)

— smoothing development pattern with curve, e.g.

In(4;))=p+a; +5 () + vy j




Poisson model (9) — prediction error
N/
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MSEP, = Var[D,] + Var(D)]

A A N
~ K A+ L2 Var[l + of + B

= most software packages calculate quantities needed
(e.g. S-PLUS, GLIM)




